Spatial imaging of the nucleon

J. Roche (Ohio University)

- Hard exclusive reactions allow the study of the 2+1 D structure of nucleon through the measure of Generalized Parton Distributions that goes beyond what can be achieved with elastic scattering.
- Dedicated experiments are conducted world-wide.
- The growing set of existing results is helping refine our approach to extracting the GPDs from the data and within limits some preliminary results.
- DVCS experiments are an essential part of the comprehensive GPD program with the 12 GeV CEBAF beam and the EIC.

What we talked about during our last meeting

What we talked about during our last meeting

At leading twist:

 $d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = \Im m \left(T^{BH} \cdot T^{DVCS} \right)$ $d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + \Re e \left(T^{BH} \cdot T^{DVCS} \right) + |DVCS|^{2}$

$$|\mathcal{T}_{\rm DVCS}|^2 = \frac{e^6 (s_e - M^2)^2}{x_{\rm Bj}^2 Q^6} \left\{ \sum_{n=0}^2 c_n^{\rm DVCS} \cos(n\phi_{\gamma\gamma}) + \sum_{n=1}^2 s_n^{\rm DVCS} \sin(n\phi_{\gamma\gamma}) \right\}$$

The DVCS program worldwide

Experimental timeline

- Pioneering results from non-dedicated experiments (Hall B and Hermes): ~2001
- First round of dedicated experiments (Hall A/B, Hermes, H1&ZEUS): ~ 2005
- Second round of dedicated experiments (Halls A/B): ~2010
- Compelling DVCS program at JLab-12 GeV and Compass: 2015 and later
- EIC program...

In the valence region (JLab 6 and JLab 12)

Partially complimentary, overlapping

- Hall A/C
 - high accuracy (~5%)
 - limited kinematic
- Hall B:
 - wide kinematic range
 - limited accuracy (15+%)

Collider mode e-p forward fast proton

Polarised 27 GeV e-/e+ Unpolarised 920 GeV p ~ Full event reconstruction

Collider mode e-p forward fast proton

Polarised 27 GeV e-/e+ Unpolarised 920 GeV p ~ Full event reconstruction

Fixed target mode slow recoil proton

Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 with recoil detector

Collider mode e-p forward fast proton

Polarised 27 GeV e-/e+ Unpolarised 920 GeV p ~ Full event reconstruction

Fixed target mode slow recoil proton

Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 with recoil detector

High lumi, highly polar. 6 & **12 GeV e**-Long, (Trans) polarised p, d target Missing mass technique

Slide from N d'Hose, Tranversity 2014

large acceptance det

Spectrometer

Collider mode e-p forward fast proton

Polarised 27 GeV e-/e+ Unpolarised 920 GeV p ~ Full event reconstruction

Fixed target mode slow recoil proton

Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 with recoil detector

High lumi, highly polar. 6 & **12 GeV e**-Long, (Trans) polarised p, d target Missing mass technique

Highly polarised **160 GeV** μ +/ μ p target, (Trans) polarised target with recoil detection

Slide from N d'Hose, Tranversity 2014

COMPASS

World wide DVCS measurements existing and planned

arXiv:1212.1701[nuc-ex]

The ideal experiment

High beam energy

ensure hard regime and large kinematic domain **polarized** beam availability of **positive** and **negative** leptons variable energy for: L/T separation for pseudo scalar production

 ϵ separation for DVCS² and Interference (DVCS+BH)

H₂, D₂, Longitudinaly and Transversely Polarized Target

High luminosity

small cross section fully differential analysis (x_B , Q^2 , t, ϕ)

Hermetic detectors

ensure exclusivity

but does not exist (yet)

Slide from N d'Hose, Tranversity 2014

High beam energy

Example at E_f =160 GeV x_B 🗡 BH 💊

Slide from N d'Hose, Tranversity 2014

Exclusivity

Exclusivity: Hermes recoil detector

Recoil detector installed in January 2006:

•Silicon strip detectors, scintillator fiber,

•1T super conducting solenoid

 $e(p,e'p'\gamma)$ with 1% contamination

Hall B/JLab

Dedicated apparatus (added within Clas): PbWO₄ calorimeter + 5 T super conducting solenoid $e(p,e'p'\gamma)$: ~5% contamination

Longitudinally **Polarized Target**

- ✦ Frozen ammonia as a target material
- polarized by **Dynamic Nuclear Polarization** in a 5 Tesla homogeneous magnetic field
- monitored using a Nuclear Magnetic Resonance system

Beam spin and longitudinal target asymmetries published from dedicated or not dedicated experiments.

•Good resolution : no need for the proton array => solid angle easy to compute •Remaining π contamination 1.7%

Hall A/JLab

CALORIMETER → 208 PbF₂ blocks

- → ∆q/q ~ 3%
- → Calorimeter energy resolution is our limiting factor in the missing mass reconstruction

Simulated M_X^2 resolution

PbF2 3X3X18 cm block ~1000 pe for 1 GeV outgoing photon

DVCS is a rare process: Pile-up and coincidence time

Absolute cross-sections versus relative asymmetries

λT

$$\sigma = \frac{d\sigma}{d\Omega} = \frac{N}{\mathcal{L} \ d\Omega} \epsilon$$

$$A = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{\text{total}}} = \frac{1}{P} \left(\frac{N_{+} - N_{-}}{N_{+} + N_{-}} \right)$$

$$N : \text{number of event detected}$$

$$\mathcal{L} : \text{luminosity}$$

$$d\Omega : \text{solid angle}$$

$$\epsilon : \text{detector efficiency}$$

$$P : \text{polarization rate}$$

Experimentally "easy" to measure

The pioneering Hall B DVCS measurement of 2001: beam spin asymmetry $A = \frac{\overrightarrow{\sigma} - \overleftarrow{\sigma}}{\sigma_{\text{total}}} = \frac{1}{P} \left(\frac{\overrightarrow{N} - \overleftarrow{N}}{\overrightarrow{N} + \overleftarrow{N}} \right)$

S. Stepanyan et al. PRL, hep-ex:0107043

Also HERMES, PRL, hep-ex:0106068

Bjorken regime reached !! GPDs formalism applies !!

Absolute cross-sections versus relative asymmetries

$$\sigma = \frac{d\sigma}{d\Omega} = \frac{N}{\mathcal{L} \ d\Omega} \epsilon$$

$$A = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{\text{total}}} = \frac{1}{P} \left(\frac{N_{+} - N_{-}}{N_{+} + N_{-}} \right)$$

$$N : \text{number of event detected}$$

$$\mathcal{L} : \text{luminosity}$$

$$d\Omega : \text{solid angle}$$

$$\epsilon : \text{detector efficiency}$$

$$P : \text{polarization rate}$$
Experimentally "easy" to measure

Needs to understand the total cross-section to reliably interpret the data

Measuring DVCS to access GPDs information

When only considering the handbag diagram (at leading twist)

$$d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = \Im \left(T^{BH} \cdot T^{DVCS} \right)$$

$$d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + \Re e \left(T^{BH} \cdot T^{DVCS} \right) + |DVCS|^{2}$$
Known to 1%
Bilinear combinations of GPDS
Linear combinations
of GPDs

Absolute cross-sections versus relative asymmetries

$$\sigma = \frac{d\sigma}{d\Omega} = \frac{N}{\mathcal{L} \ d\Omega} \epsilon$$

$$A = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{\text{total}}} = \frac{1}{P} \left(\frac{N_{+} - N_{-}}{N_{+} + N_{-}} \right)$$

$$N : \text{number of event detected}$$

$$\mathcal{L} : \text{luminosity}$$

$$d\Omega : \text{solid angle}$$

$$\epsilon : \text{detector efficiency}$$

$$P : \text{polarization rate}$$
Experimentally "easy" to measure

Needs to understand the total cross-section to reliably interpret the data

When possible, absolute cross-sections are better.

Absolute Cross-sections analysis in CLAS

Q² (GeV²)

Extracting cross-sections from the data: the Hall A scheme

$$\frac{d^4\sigma}{dx_b dt d\phi_{\gamma} dQ^2} = \Gamma^G |BH|^2 + \Gamma^1 \mathcal{C}^{\mathcal{I}}(\mathcal{F}) + \Gamma^2 \Delta \mathcal{C}^{\mathcal{I}}(\mathcal{F}) + \Gamma^3 \mathcal{C}^{\mathcal{I}}(\mathcal{F}^{eff})$$

 Γ^{i} : kinematic factors (calculable in experimental setup simulation) ${f C}^{i}~(=~{f C}^{I},~{f \Delta}{f C}^{I},~{f C}^{I}_{}_{}_{{
m eff}}\!)$: Compton Form Factors obtained by fit on the data

The extracted cross-section is model independent.

Interpreting the extracted CFFs needs to be done carefully: 8 GPDs (4 X 2), twist 2-3 expansion...

1 question: 30 m reading + 15 min discussions

ACTIVE LEARNING

What I hear, I forget

What I see, I remember

What I do, I understand

Group 1	Group 5
Meriem*, Shokhna, Kieran,	Nabil*, Brandon C., Fillipo,
Carlos Y.	Manuel
Group 2	Group 6
Frederic*, Shujie, Shivangi,	Brandon K.*, Alexa, Bailing,
Ryan	Gavin
Group 3	Group 7
Waverly*, Sandra, Bijit,	Holly, Larissa, David AQ,
Arkadiusz	Giovanni
Group 4	Group 8
Hamza, Scott, Marco, Dexu	Luca*, Elias, David R.
Group 9 Abel, Tao, Rajesh	*: familiar with GPDs/DVCS

Hall B experimental analysis

Cross sections for the exclusive photon electroproduction on the proton and Generalized Parton Distributions

CLAS Collaboration (H.S. Jo (Orsay, IPN) et al.)

Published in Phys.Rev.Lett. 115 (2015) no.21, 212003 arXiv:1504.02009 [hep-ex]

Start reading at the * mark.

- 1. How are the events selected?
- 2. How is the cross-section calculated?
- 3. What is the precision of the extracted absolute cross-section?

